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INTRODUCTION

The marine environment, with its great rich-
ness and quantity of creatures, promises a limitless 
reservoir of compounds that may be exploited and 
utilised to benefit human well-being. Macroalgae 
are important oceanic natural resources, rising 
from 10.6 million tonnes in 2000 to 32.4 million 
tonnes in 2018. Seaweeds represented 97.1 percent 
of 32.4 million tonnes of wild-collected and pro-
duced aquatic algae combined [FAO, 2020]. As an 
agarophyte, the genus Gracilaria is of significant 
commercial value and it is the most prevalent and 

promising source of agar. It comprises over 150 
species in temperate and subtropical zones [Vuai, 
2022]. Gracilaria species are exploited and em-
ployed in a variety of sectors, including direct con-
sumption as human food [Jensen, 2004; Dillehay 
et al., 2008; Gordon, 2017], in medicine to treat 
intestinal constipation, dysentery, enteritis, thyroid 
diseases, urinary disorders, respiratory disease, 
and diarrhea [Khare, 2007; Costa et al., 2016; Fu 
et al., 2016; Leódido et al., 2017]. These species 
contain many bioactive chemicals with various bi-
ological characteristics, such as anti-cancer [Zandi 
et al., 2010; Sakthivel et al., 2016; Yi et al., 2022], 
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anti-inflammatory [Chaves et al., 2013; Chen et al., 
2013; da Costa et al., 2017], anti-diabetic [Mak-
kar and Chakraborty, 2017], anti-oxidant and an-
ti-bacterial [Widowati et al., 2014; Afonso et al., 
2021]. The extracts of Gracilaria are also used in 
agriculture as biostimulants for lettuce [Torres et 
al., 2018] and against pathogens like the root-rot 
fungus, Phytophthora cinnamomi [Jiménez et al., 
2011], in aquaculture as an immunity booster for 
shrimp [Lin et al., 2011; Chen et al., 2016], as a 
feed [Valente et al., 2006; Al-Asgah et al., 2016] or 
as a supplement in feed [Lozano et al., 2016; Mag-
noni et al., 2017]. Furthermore, Gracilaria species 
were evaluated as insecticides [Leite et al., 2005; 
Madhiyazhagan et al., 2016], nematicides [Rizvi 
and Shameel, 2006; Khan, Abid and Hussain, 
2015], and acaricides [Lima et al., 2005; Ruang-
somboon and Pumnuan, 2016].

Gracilaria gracilis is a benthic, intertidal 
red macroalga (Rhodophyta) that belongs to the 
commercially valuable Gracilaria genus, to the 
order Gracilariales and Family Gracilariaceae. It 
is highly valued in scientific research for its abil-
ity to produce high-quality agar and a variety of 
essential organic components, such as proteins, 
lipids, fatty acids, phenols, sterols, and carbohy-
drates. The demand in the market coupled with in-
sufficient crop management practices has resulted 
in the overharvesting of natural G. gracilis stands 
in several locations. This has led to Gracilaria 
scarcity, price rises, and a demand for stable sup-
ply and quality. As a result, farming this species 
has sparked a lot of interest, and numerous culti-
vating techniques have been created to make the 

farmed Gracilaria crops more significant than wild 
Gracilaria crops. Therefore, it is crucial to com-
prehend the biology of G. gracilis, its habitat, and 
the environmental factors influencing its growth. 
This understanding is essential for cultivating G. 
gracilis on a large scale, contributing to success-
ful and sustainable production of this alga spe-
cies. In the shed of this data, this review aimed 
to offer a comprehensive guide to the agarophyte 
Gracilaria gracilis, aiming to identify and explore 
new research opportunities. To reach this goal, the 
current state of knowledge about this red macroal-
ga was summarized by providing the information 
about its biology, chemical composition, cultiva-
tion methods, environmental factors affecting its 
growth, and the uses of this Rhodophyta.

RESEARCH METHODOLOGY

The methodology comprised a literature re-
view utilizing key search terms in such databases 
as Google Scholar, ScienceDirect, and Springer. 
A total of 83 articles were identified, focusing on 
biology, chemical composition, cultivation tech-
niques, growth, and uses. The collected articles 
underwent systematic review and analysis to con-
tribute to the literature review.

General biology

G. gracilis follows the typical pattern of most 
Rhodophyta, the triphasic Polysiphonia-type life 
history [Engel et al., 2001; Leitao, 2005; Haddy, 

Figure 1. Haploid–diploid life cycle in G. gracilis; italic characters and thin lines 
show haploid phase stages; bold characters and thick lines indicate diploid phase 

stages; italic characters and thick show carposporophyte phase stages
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2011; Freitas et al., 2021]. As in all sexual life cy-
cles, the three stages are related via meiosis and 
syngamy [Engel et al., 2001] (Fig. 1). The first 
phase is a diploid phase where tetraspores are pro-
duced from the tetrasporophytes via meiosis and 
develop into haploid isomorphic gametophytes 
(second phase), whereby the gametes are formed 
by mitosis. Male gametes, which lack flagella, are 
released into the water column and adhere to the 
trichogyne (female carpogonium extensions that 
extend slightly from the surface of the female 
thallus) [Engel et al., 2002; Engel, Destombe, and 
Valero, 2004] and fertilize the female gamete. The 
fertilized female gamete develops into cystocarps 
(a hemispherical fruiting body that is macroscopic 
and made of both maternal as well as zygotic tis-
sues), forming the additional diploid (carposporo-
phyte) phase [Engel et al., 2002; Engel, Destombe 
and Valero, 2004; Polifrone, De Masi and Gargiu-
lo, 2006]. The zygote within the cystocarp multi-
plies by mitosis, releasing thousands of identical 
carpospores. These carpospores disperse grow 
into diploid tetrasporophytes [Freitas et al., 2021]. 

G. gracilis generally appears in the lower inter-
tidal and upper subtidal, where it is found attached 
to stones, boulders, bedrocks, and sandy shores by 
a perennial holdfast [Haddy, 2011]. At low tide, it 
is commonly observed growing through up to 20 
cm of sand under running water. It is found in tem-
perate waters at 0 and 20 m [Gioele et al., 2017]. 

Chemical composition of Gracilaria gracilis

Seaweeds may produce a variety of chemical 
compounds in varying concentrations, so the re-
search field devoted to the discovery of bioactive 
components in algae is practically unlimited [Rod-
rigues et al., 2015]. Seaweeds are considered low in 
calories and high in polysaccharides, minerals, ster-
oids, vitamins, proteins, and dietary fibers, making 
them increasingly popular commercially [Lordan, 
Ross and Stanton, 2011]. Table 1 shows the bio-
chemical composition of Gracilaria gracilis.

Proximate biochemical composition

Protein content 

Red seaweed protein contents are comparable 
to meat protein contents (18–25%) and several 
legume proteins, such as peas or beans (19–22%) 
[Rodrigues et al., 2015]. Therefore, these al-
gae might be utilized to make protein-balanced, 

low-cost meals that could replace vegetable pro-
tein sources like legumes and cereals.

In a study by [Özen et al., 2018] to determine 
the effects of salinity stress on G. gracilis, the high-
est total protein content (88.47 mg/g wet weight) 
was found at a salinity level of 48 ‰ on day 2 of 
the experiment. Day 7 had the lowest value, 2.35 
mg/g wet weight at the same salinity. Greenlight 
(500–550 nm) stimulates protein accumulation, 
reaching 29 mg·g-1 DW. There is a 56% increase, 
as compared to the control. Nevertheless, the other 
light qualities had no apparent impact. The protein 
values obtained from wild populations of LOBS 
(14.20%) were slightly higher than those from 
FFBC populations (11.80%), but lower than cul-
tured G. gracilis (21.58%) [Freitas et al., 2021]. 
The protein values obtained for cultured G. gracilis 
were similar to those reported by [Rodrigues et al., 
2015] for wild Portuguese populations (20.2%). 
However, [Rasyid, Ardiansyah, and Pangestuti, 
2019] reported significantly lower values (10.86%) 
for wild G. gracilis collected in Indonesia. 

The crude protein content (the total nitrogen 
content multiplied by 6.25) varied significantly 
from 2.96% at a depth of 2.5 m with an initial 
fragment weight (IFW) of 40 g to 5.83% at a 
depth of 0.5 m with an IFW of 5 g [Ben Said et 
al., 2018]. This indicates that the IFW and depth 
influence the crude protein content.

R -phycoerythrin content 

G. gracilis is a valuable source of the red 
pigment R-phycoerythrin [Nguyen et al., 2020]. 
After extraction and purification, it is used as a 
natural colorant and fluorescent probe with di-
verse uses in the cosmetic, food, pharmaceutical, 
and biomedical sectors. The R-phycoerythrin 
content reported by [Francavilla et al., 2015] for 
the Italian G. gracilis was substantially higher (7 
mg·g-1) than that obtained by [Özen et al., 2018], 
who obtained the highest value (2.048 mg·g-1) for 
Turkish G. gracilis populations (Izmir Bay) at a 
salinity level of 37‰ on day 2 of the experiment. 
The lowest value was obtained on Day 7 at 0.356 
mg·g-1 at 25‰ salinity, and by, G. gracilis – 0.907 
mg/g. Moreover, the R phycoerythrin content of 
G. gracilis from the Bizerte lagoon ranged from 
0.011 mg·g-1 at a depth of 2.5 m and an IFW of 40 
g to 0.050 mg·g-1 at a depth of 0.5 m and a starting 
weight of 5 g [Ben Said et al., 2018].
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Carbohydrate, 3,6-anhydrogalactose, 
and sulphate content

Carbohydrates stand out as a predominant 
storage compound within plants, serving as a 
source of food and fiber for humans and animal 
feed [Chibbar and Båga, 2003]. They also play 
a crucial role in metabolism, serving as the pri-
mary source of energy needed for respiration and 
other metabolic processes [Khairy and El-Shafay, 
2013]. The carbohydrate content was the most 
abundant component of the proximate composi-
tion in G. gracilis studied by [Rasyid, Ardiansyah 
and Pangestuti, 2019], accounting for 63.13%. 
This finding was higher than that published by 
[Freitas et al., 2021] for cultured G. gracilis 
(38.35%) and wild FFBC and LOBS populations 
(40.72% and 44.12%, respectively); [Ben Said et 
al., 2018] reported 9.52% for Tunisian G. gracilis 
harvested at 2.5 m with an IFW of 40 g.

The 3,6-anhydrogalactose content varied 
from 20.12% to 47.17%. The minimum and the 
maximum percentages were noted in the algae 
with an IFW of 5 g and 40 g at 0.5 m, respectively 
[Ben Said et al., 2018]. The sulphate content of 
Tunisian G. gracilis was observed to vary from 
3.98 to 5.51%. The highest and the lowest values 
were obtained from the agar samples cultivated at 
0.5 m and 2.5 m and with an IFW of 5 g and 40 g, 
respectively [Ben Said et al., 2018]. 

Total lipid content 

Lipids form an extensive category of natu-
rally occurring compounds that includes sterols, 
waxes, fat, fat-soluble vitamins (such as vitamins 
A, B, D, and K), phospholipids, monoglycerides, 
diglycerides, carotenoids, and others [Bernal et 
al., 2011]. They contribute to various biological 
purposes, including serving as energy storage 
molecules, important signaling molecules, and 
structural components of cell membranes [Ber-
nal et al., 2011]. The total lipid content ranged 
between 1.37% and 3.58%. The maximum lipid 
content was found in algae cultivated at 2.5 m 
from initial weights of 5 g, whereas the lowest 
was found at 0.5 m from initial fragment weights 
of 5 g (Ben Said et al., 2018). Moreover, [Fran-
cavilla et al., 2013] reported that the lipid content 
of G. gracilis gathered from Lesina Lagoon (Ita-
ly) assorted from 1.19% to 1.98% dw. Likewise, 
[Freitas et al., 2021] found that the values from 
cultivated biomass varied from 1.21% to 1.40 % 
from LOBS wild populations. 

Total phenolic and total flavonoid content

The total phenol content of the methanolic ex-
tract of G. gracilis was 29.39 mg gallic acid, equiv-
alent·g-1 of extract. In contrast, the ethyl acetate 
extract was calculated to be 35.53 mg·g-1 [Ebra-
himzadeh, Khalili, and Dehpour, 2018]. The to-
tal phenolic content of the Portuguese G. gracilis 
was 228 mg catechol equiv·g-1 dry seaweed [Ro-
drigues et al., 2015]. On the basis of a study, the 
light quality considerably impacts phenolic com-
pounds. The highest accumulation, 2.92 mg·g-1 
DW, was found under blue light, 68% more than 
the control. Nevertheless, under UV and red-light 
conditions, the concentration of phenolic com-
pounds decreased by 17% and 25%, respective-
ly (Table 1). Regarding total flavonoid content, 
the ethyl acetate extract of G. gracilis species 
was rich in flavonoid compounds (66.48±1.87 
mg quercetin equivalent·g-1 of extract). However, 
the methanolic extract contained fewer flavonoid 
compounds (26.47±1.203 mg·g-1) [Ebrahimza-
deh, Khalili and Dehpour, 2018]. 

Cultivation methods

The natural deposits of Gracilaria are dwin-
dling worldwide due to overexploitation. This si-
tuation has prompted the development of various 
cultivation techniques aimed at augmenting bio-
mass. Therefore, cultivation has the best potential 
to conserve natural resources and meet the high 
demand for agar. All planting methods depend 
on the ability of Gracilaria to create an under-
ground thallus system that ties the algae to the 
soft bottom.

Open water systems

The cultivation of seaweeds in the sea is 
usually done in protected bays and estuaries. 
Gracilaria crops are planted using one of two 
methods: bottom culture and suspended culture 
(Table 2). In these two approaches, the spores 
settled on lines and ropes, vegetative thalli or 
cuttings tied to or inserted into line, or rope can 
be used as planting material.

Land-based systems

The cultivation of Gracilaria in land-based 
systems can be divided into intensive (tank farm-
ing) and non-intensive (pond farming) cultivation 
systems (Table 3). Tanks are typically constructed 
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of concrete or plastic and have a water agitation 
system. They are regarded as the most expensive 
method of cultivating seaweeds, while ponds are 
always composed of open earthen structures and 
lack an artificial water agitation system. 

Environmental factors affecting the 
growth of gracilaria gracilis

Seaweeds live in a dynamic and complex 
ecological environment that can be classified 
as an extreme environment because abiotic 
(e.g., temperature, light intensity, salinity, and 
nutrients) and biotic (e.g., epiphytism) factors 
can fluctuate widely and rapidly, requiring sea-
weeds to adapt quickly [Cotas et al., 2020]. 
Therefore, understanding how these factors af-
fect growth and production is important in cul-
tivating and managing this marine macroalgae 
[Njobeni, 2006].

Temperature

Temperature is the primary physical factor de-
termining the seasonal and latitudinal distribution 
of seaweed [Gebrekiros, 2003]. Understanding its 
effects on growth can help predict seasonal pro-
ductivity fluctuations [Morgan, 2000]. In a study 
conducted at Klein Oesterwal, Langebaan La-
goon, South Africa, it was found that the growth 
of G. gracilis was positively affected by higher 
temperatures, with growth measurements increas-
ing between 22°C and 30°C, but decreasing at 
18°C [Beltrand et al., 2022]. Likewise, [Mensi et 
al., 2020] reported that the optimum growth had 
been observed in restricted temperature ranges, 
between 20°C and 28°C. 

Light

Light, just like temperature, significantly im-
pacts the growth of Gracilaria. It provides the 

Table 1. Biochemical composition of Gracilaria gracilis

Reference Moisture
(% dw)

Organic matter 
(%)

Ash
(%)

Carbohydrate 
(%)

3.6 
anhydrogalactose 

(%)

Sulphate
(% ww) Protein R-phycoerythrin 

(mg/g dw)
Total lipid 
(% dw)

Freitas et al. 
(2021) 72.02-82.04 72.85-81.04 18.96-27.15 38.35-44.12 nd nd 11.80-21.58% nd 1.21-1.40

Rasyid et al. 
(2019) 19.04 nd 6.78 63.13 nd nd 10.86% nd nd

Rodrigues et 
al. (2015) 7.99 ± 0.02 67.21 ± 0.01 24.8 ± 0.03 nd nd nd 20.2 ± 0.6% nd nd

Özen et al. 
(2018) nd nd nd nd nd nd 2.35-88.47 

mg/g ww 0.356-2.048 nd

Ben Ghedifa et 
al. (2021) Nd nd nd nd nd nd 29±4.32

mg/g dw 0.907±0.34 nd

Ben Said et al. 
(2018) Nd nd 19.04-35.25 5.38-9.52 20.12- 47.17 3.98-5.51 2.96-5.83% 0.011-0.050 1.37-3.58

Francavilla et 
al. (2015) 1.32-9.13 nd 19.98-20.88 24.8-34.1 nd nd 31–45% 7 1.19-1.98

Mollet et al. 
(1998) Nd nd nd nd 36.6-50.4 2.1-6.6 nd nd nd

Note: Nd – not defined; dw – dry weight; ww – wet weight.

Table 2. Open water cultivation methods
Type Methods Tools Requirements

Bottom 
culture

1- Transplanting rocks or securing plants to 
substrates
2- Insert thalli into the sandy bottom (direct method)
3- Fixing thalli into sandy bottom (Plastic 
tube method)
4- Inoculating spores (either tetra- or carpospores) 
onto ropes (Spore method)

1- Raffia, rubber bands…
2- Weights or forks
3- Polyethylene tubes filled 
with sand
4- Ropes

The spore method requires:
- Nursery unit (indoor tanks 
and inoculation chamber)
- Prepare out-planting site

Suspended 
culture

1- Suspended between stakes 
2- Supported by buoys or a raft 
3- Anchored to seafloor 
4- Inoculating tetra or carpospores into lines or nets 
(spore method)

Weaving plant materiel 
through rope fibers or tying 
with Raffia or nylon

The spore method requires:
- Nursery unit (indoor tanks 
and inoculation chamber)
- Prepare out-planting site
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initial energy for photosynthesis [Gebrekiros, 
2003], and it is used as a signal for life processes, 
such as reproduction and growth during the life 
cycle of seaweeds [Gebrekiros, 2003]. 

Algal growth is significantly influenced by 
light intensity. [Ben Ghedifa et al., 2021] stated 
that the highest daily growth rate (DGR) (7.24% 
day-1±1.06) was observed under red light (620–
670 nm) compared to the control (95 µmol pho-
tons m-2·s-1), which was 2.17%±0.2. Following 
this, the samples exposed to blue light (400–450 
nm) exhibited a growth rate of 5.73% day-1 ±0.17. 
The supplemented green light (500–550 nm) in-
creased the growth rate compared to the control. 
However, compared to the other samples, it is 
still the lowest (3.77% day−1±0.42). [Mensi and 
Ben Ghedifa, 2019] found that the optimum DGR 
(5% day-1) was attained at an irradiance of 198 
μmol photons m-2·s-1, while the impact of light 
reached a maximum of roughly 195 μmol photons 
m-2·s-1, decreasing on both sides of this value. A 
reduction in growth rate exceeding this light limit 
could indicate the beginning of photoinhibition. 
A light intensity increase induces photoinhibition 
and diminishes light use efficiency [Mensi and 
Ben Ghedifa, 2019]. These authors also reported 
that under the following light conditions (70–210 
μmol photons m-2·s-1), G. gracilis could be culti-
vated with an acceptable DGR exceeding 3% per 
day. However, G. gracilis growth did not show 
enhancement at lower light intensities (70 μmol 
photons m-2·s-1).

Depth

Due to its negative association with light in-
tensity, depth is a significant and complex factor 
influencing algal production [Yang et al., 2015]. 
A study by [Ben Said et al., 2018] showed that G. 
gracilis could be cultivated at 0.5 and 2.5 m depths, 
with the maximum DGR found at 0.5 m. The cul-
tivation experiment of G. gracilis in the Bizerte 
lagoon (BL), Tunisia, showed that the shallow-
est depth (1 m) yielded the highest DGR values, 
while the deepest (>3 m) yielded the lowest. In 
comparison, the DGR of G. gracilis in Bizerte 
Bay (BB) remained unaffected at a depth of 4 m, 
suggesting that sufficient light levels were avail-
able in the studied depths [Mensi et al., 2020]. 
In Izmir Bay, Aegean Sea-Turkey, the best re-
sults were obtained with the plants suspended 
at 0.6–0.7 m depth [Dural, Demir and Sunlu, 
2006], where the plants were suspended near the 
bottom. Near the water, surfaces were subjected 
to epiphytism or fish consumption, affected by 
waves or currents, or died due to sunlight [Dural, 
Demir and Sunlu, 2006].

Salinity

A study conducted by [Cirik et al., 2010] 
showed that G. gracilis had a wide salinity tol-
erance range, and the optimum production was 
determined at 42‰ salinity. Moreover, [Özen et 
al., 2018] found that G. gracilis grows well in the 
salinity ranges between 25‰ and 35‰. However, 

Table 3. Cultivation methods for land-based systems
Type Description Requirements Strengths Limitations

Pond farming

- Open earthen structure (including 
natural lagoons or artificial 
excavations);
- Large (0.5 to 2 ha) and shallow 
(<1m)
- Optimal location: Sheltered areas 
with minimal wind strategically 
positioned near the sea for 
effective tidal water exchange.
- Alga are often free-floating and 
properly spaced throughout the 
bottom surface of ponds.

- Water pumping
- Nutrient addition (fertilizers) 
if needed

- Requires less 
control
- The simplest and 
cheapest method

- Certain factors 
need to be 
considered 
(temperature, 
salinity, and pH)

Tank farming

-Small concrete or industrial tanks 
(from liters to cubic meters)

- Water agitation system
- Sufficient supply of nutrients 
(phosphorous and nitrogen);
- Compressed air or paddle 
wheels to maintain movement;
- Additional factors (light, 
temperature, CO2 supply, pH).

- Production control
- The most significant 
productivity per unit 
area
- Sustainable and 
high production

- Requires
a significant 
amount of energy 
and capital 
investment.
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these authors only focused on the impact of differ-
ent salt concentrations on the biochemical com-
position of G. gracilis. They did not investigate 
other factors that could affect the growth and sur-
vival of the alga.

Nutrients

Several studies showed that nutrient levels, 
particularly nitrogen levels, play a crucial role 
in influencing agar yield, quality, and the growth 
of Gracilaria [Yang et al., 2015; Ben Said et 
al., 2018]. It has been shown that the DGR of 
G. gracilis augmented with increasing dissolved 
inorganic nitrogen (NH4

+ + NO3-) concentration, 
reaching 300 μmol [Mensi and Ben Ghedifa, 
2019]. Among nutrients, ammonium is important 
in controlling the growth of G. gracilis. For ex-
ample, [Mensi and Ben Ghedifa, 2019] demon-
strated that under the following ammonium con-
ditions (10–80 μmol·g-1·L-1), G. gracilis could be 
cultivated with an acceptable DGR exceeding 3% 
per day. Nevertheless, the maximum DGR (5% 
day−1) was reported at a nitrogen concentration of 
80 μmol·g-1·L-1 for ammonium. Also, it has been 
highlighted that the growth rate of G. gracilis was 
the highest (DGR: 5% day−1) when nitrate concen-
trations reached 210 μmol·g-1·L-1 [Mensi and Ben 
Ghedifa, 2019]. Photosynthetic parameters, thalli 
nitrogen content, and nitrogen uptake rates en-
courage higher productivity. In a comparison be-
tween the BL and BB, [Mensi et al., 2020] found 
that the nitrogen concentration in the two sites 
was insufficient (<50 µmol) to maintain the high 
seaweed DGR needed for biomass production as 
indoor culture (>1000 µmol) because of the high-
ly nitrophilic character of G. gracilis. Hence, the 
growth rate of BL exceeded that of BB, possibly 
due to the enrichment of nitrogen from surface 
runoff into the lagoon. This nitrogen influx aids 
algae in fulfilling their nitrogen requirements.

Epiphytism

Seaweed biodiversity and abundance are af-
fected by herbivores and other organisms [Yang 
et al., 2015]. Primary consumption by herbivores 
can diminish thallus mass as well as influence the 
growth and reproductive processes of seaweeds 
[Dethier, Williams and Freeman, 2005; Williams, 
Bracken and Jones, 2013]. Moreover, epiphytes 
can impact seaweed production either directly, by 
shading the seaweed and constraining its growth, 
or indirectly, by causing the sinking of culture 

lines [Asaeda et al., 2004]. At Baha Bustamante, 
Argentina, the G. gracilis population serves as 
a substrate for various epiphytes with varying 
degrees of attachment and/or infection. Twen-
ty-nine algal species were reported as G. graci-
lis epiphytes. They included 17 Rhodophyta, 9 
Heterokontophyta (class Phaeophyceae), 2 Chlo-
rophyta, and 1 Cyanophyta species. Among the 
numerous species observed, Calothrix confervi-
cola stood out as one of the most abundant. This 
epiphyte, which exhibited weak attachment to the 
host surface (G. gracilis surface), did not induce 
any damage to the host tissue. In contrast, species 
like C. rubrum, Polysiphonia abscissa, and other 
Ceramiales were more detrimental, causing harm 
by penetrating the cortical portion of the host thal-
lus, with their rhizoids occasionally reaching the 
medullary tissue [Martín et al., 2013]. According 
to [Nabivailo, Skriptsova and Titlyanov, 2005], 
the associated algal species Enteromorpha prolif-
era f. prolifera (Ulva prolifera), Chaetomorpha 
linum, and Polysiphonia sp. inhibited the photo-
synthetic activity of G. gracilis both in nature, 
during their blooms, and in laboratory culture. 
These authors proposed that the inhibition of G. 
gracilis photosynthesis is related to the influence 
of extracellular metabolites secreted by Entero-
morpha prolifera f. prolifera, Chaetomorpha li-
num, and Polysiphonia sp.

Uses of Gracilaria gracilis

Globally, seaweeds have been used for thou-
sands of years as feed, food supplements, sources 
of medicine, and fertilizers in agriculture [Ben 
Said et al., 2018] and to control the postharvest 
diseases of fruits (Bahammou N, 2017). On the 
basis of the nutraceutical and nutritional value of 
Gracilaria gracilis, shown by the research pub-
lished worldwide [Paiva et al., 2014; Rodrigues 
et al., 2015; Freitas et al., 2021], it is suggested 
that this seaweed species can potentially be used 
as a raw material or as a food or supplement for 
humans and various species of fish and shellfish. 
Additionally, the generally high protein content 
gives this species relevance as a health promot-
er, nutraceutical agent, and healthy and nutritious 
gastronomic ingredient [Mouritsen, Rhatigan 
and Pérez-Lloréns, 2019]. Moreover, algae are 
a known source of vitamins and are valued for 
their metabolic processes, antioxidant activity, 
and other health advantages. In particular, the 
water-soluble vitamin C in G. gracilis decreases 
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blood pressure and reduces the risk of cancer 
[Škrovánková, 2011; Freitas et al., 2021]. In ad-
dition, G. gracilis is considered an economically 
valuable resource for its agar content [Marin-
ho-Soriano and Bourret, 2003; Rodríguez et al., 
2009]. G. gracilis can be suggested as a poten-
tial novel commercial source of phycobilipro-
teins, proteins that function as photosynthetic 
accessory pigments in red algae, cyanobacteria, 
cryptophytes, and glaucophytes. Phycoerythrin 
(R-phycoerythrin) [Cotas et al., 2020], which, 
after extraction and purification, is applied as a 
natural colorant in food [Pereira et al., 2020] and 
cosmetics and as fluorescent probes in diagnostic 
assays and diverse studies, can be taken as an ex-
ample [Dumay and Morançais, 2016]. G. gracilis 
is also a valuable source of organic compounds 
such as proteins, lipids, fatty acids, phenols, ster-
ols, and carbohydrates [Francavilla et al., 2013]. 
Additionally, the macroalgae has a high phenol 
and flavonoid content, which allow it to pos-
sess excellent antioxidant properties [Freitas et 
al., 2021] and great radical scavenging activity 
[Francavilla et al., 2013; Barbosa et al., 2018]. 
Furthermore, the ethanol and methanol extracts 
from G. gracilis could help identify compounds 
that serve as antibacterial agents against several 
infectious agents, e.g., species from the genus 
Vibrio and Bacillus subtilis [Capillo et al., 2018; 
Freitas et al., 2021], and also could be used for 
the treatment and prevention of fish diseases due 
to Vibrio species [Cavallo et al., 2013]. Also, G. 
gracilis has the potential to serve as a promising 
source for the development of antiseptic and 
cleansing products [Capillo et al., 2018]. On the 
basis of the presence of antimicrobial and antiox-
idant compounds, According to [Barbosa et al., 
2018], seaweed extracts have been proposed as 
a potential source of preservative compounds for 
use in chilled fish storage. The inclusion of G. 
gracilis extracts in the icing system demonstrat-
ed a positive impact on the quality retention of 
chilled hake. This was evidenced by a reduction 
in microbial activity (trimethylamine formation) 
as well as an inhibitory effect on the development 
of lipid oxidation (tertiary oxidation compounds) 
[Barbosa et al., 2018]. In aquaculture, G. gracilis 
has proven successful in feed applications, pri-
marily for abalone, and has been employed as a 
biofilter in integrated multi-trophic aquaculture 
(IMTA) systems. In these systems, G. gracilis is 
utilized alongside fishes, shrimps, and abalones 
[Njobeni, 2006; Smit et al., 2007] since they have 

excellent bioremediation ability in removing in-
organic nutrients. For example, [Henriques et al., 
2015] found that G. gracilis showed massive bio-
accumulation capabilities, accumulating as much 
as 209 mg of mercury (Hg) per gram of macroal-
gae (d.w.), this corresponds to the 99% removal 
of Hg from the contaminated seawater. Further-
more, according to [Jacinto et al., 2018], living 
G. gracilis has been recognized for its potential 
in removing and recovering rare critical elements 
from wastewater, achieving removal efficiencies 
of up to 70% within 48 h and recovering near-
ly 100% of all yttrium (Y), cerium (Ce), neody-
mium (Nd), europium (Eu), and lanthanum (La) 
in seaweed biomass in a 300-fold more concen-
trated solution.

CONCLUSIONS

Gracilaria gracilis is a popular seaweed be-
cause it produces high-quality agar and a variety 
of other organic compounds, such as proteins, 
lipids, fatty acids, phenols, sterols, and carbohy-
drates. Decreased natural beds have encouraged 
agar producers and dealers to investigate other 
production methods. As a result, cultivation of 
this seaweed has increased in recent years, with 
promising results. A well-established “protocol” 
appears critical for allowing large-scale produc-
tion of this alga species. Recent research has re-
vealed that this alga might be used in innovative 
ways. Further research is warranted to investigate 
the influence of temperature and salinity on the 
growth of this species. Encouraging additional 
studies will contribute to developing novel culti-
vation techniques and agar extraction procedures 
to enhance yields and quality as well as discover 
new uses for this species and new applications 
based on agar exploitation. Undoubtedly, there is 
a vast field of research to be studied in quest of 
active chemicals and new sources. 
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